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ON THE PERIODIC NONLINEARITY AND THE MULTIPLICITY OF SOLUTIONS

-Kung-Ching Chang

§1. Introduction

*." Inspired by the work of Conley and Zehnder [3] on the solution of the

Arnold conjecture, the author presented a different proof of their statement,

and noticed that the periodicity of the Hamiltonian function is the essence of

the occurrence of multiple periodic solutions [1-2]. The main purpose of this

paper is to apply the following theorem obtained in [1] to various different

problems which are studied recently by many authors in dealing with periodic

nonlinearities.

Let H be a real Hilbert space, and let A be a bounded self-adjoint

operator defined on H. According to its spectral decomposition,

H = H+ 0 H0 0 H_, where H+, H0 , and H_ are invariant subspaces

corresponding to the positive, zero, and negative spectrum of A

.-" respectively.

.. Theorem 0. Suppose that A satisfies the following assumptions

(H 1 ) A+. AI+ has a bounded inverse on H1-,

(H2 ) -y dim(H_ S H0 ) < r.

Let Vn be a C2 compact n-manifold without boundary, and let

* g C Cl(H x Vn,Rl) be a function having a bounded and compact differential

dg(x). Assume that

g(Pox,v) + -w as IP0x + w if dim H0 # 0

Also Department of Mathematics, University of Wisconsin-Madison, Madison, WI
5' 53706, and Peking University, People's Republic of China.

4Supported by the U. S. Army Research Office under Contract No. DAAL03-87-K-
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. ,where P0 is the orthogonal projection onto H0 . Then the function

f(xv) (Ax,x) + g(xv)

possesses at least cuplength (Vn) + 1 distinct critical points.

If further, we assume that g c C2 (H x V,R1), and that f is
\ n

nondegenerate, then f has at least I si(V n ) critical points, where

i=O
8i(Vn) is the ith Betti number of Vn, i = 0,1,...,n.

Remark. In the statement of Theorem 8.3 in [1], the function g was

assumed to be C2, however, in the proof of the first conclusion, C1 is

sufficient.

Most recent studies only concerned with the case where A is positive

definite, we shall give more applications where A is semidefinite, i.e., the

negative eigenspace as well as the null space are finite dimensional. They

are used to study semilinear elliptic systems and the periodic solution

problems for 2nd order ODE. Theorem 2 generalizes and unifies the results due

to Mawhin (7], Mawhin and Willem [8], Li [6], Jiang [5], Franks [4], Pucci and

Serrin [9,10] and Rabinowitz [11].

Periodic solution problems for Hamiltonian systems reduce to case where

A is unbounded and indefinite. Theorem 4 is a generalization of Theorem 2.

- It implies the early results due to Conley and Zehnder [3] as special cases..J.

In particular, the multiple periodic solutions of Hamiltonian systems with

presonance are studied, where the Hamiltonian functions are only periodic in

certain variables.

We thank Prof. P. H. Rabinowitz for his invitation to the Center for the

Mathematical Sciences, University of Wisconsin-Madison, and for his very kind

Fconversations on his interesting preprint (11].
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§2. Semi-definite functionals

A direct consequence of Theorem 0, is the following:

Theorem 1. Suppose that A is a self-adjoint operator satisfying (H1 )

and (H2 ), defined on a Hilbert space H. Suppose that 0 E CI(H,R1 ) is a

function having a bounded and compact differential do, and satisfies the

following periodicity condition:

(P) a el,...,er E ker A, they are linearly independent, and

(TI,...,Tr) r such that

r

*(x + I m T~e ) = e (x), Vx E H, V(l'.,..,mr) Zr
j=1

and the resonance condition:

(LL) O(x) + -- if lxi + a and x E ker(A) n {el,...,erl

Then the equation

Ax + do(x) = 0 (2.1)

possesses at least r + 1 distinct solutions.

If further, 0 C C2(H,R1) and all solutions of (2.1) are nondegenerate,

then (2.1) possesses at least 2r solutions.

Proof. We consider the following functional
1

J(x) = (Ax,x) + O(x)
* 2

According to (P),

r
J(x + I mjTjej) = J(x), V(mI,...,mr) C Z

r

j=l

However, we have an orthogonal decomposition

H = ker A 0 (ker A)1

= Z e Y e (ker A)
i
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where Z = span{e 1 ,...,er}, and Y = Zl ker(A). If we restrict ourselves

on the quotient space

Tr x (Y e (ker A)1 )

where Tr = Z/Zr(TI,...,Tr), Zr(TI,...,Tr) := {(miT1,...,mrTr)J(m1,...,mr)c

Zr}, the functionals

f(uv) = J(x)

and

g(u,v) = V(x)

are well defined, where (v,u) e Tr x (Y e (ker A)1) and x = u + v. The

critical point of f is a solution of (2.1). Since f and g satisfy all

conditions in Theorem 0 with H0 = Y and V = Tr, the conclusion follows

directly. We present here an application.

Theorem 2. Let M be a compact manifold without boundary, let

(aij(x)) be a symmetric (N - r) matrix valued continuous function defined

on M, and let

ker(-A IN-r + (aij(x))-) = span(y1,...,pk}

where 0 < r 4 N are integers. Assume that F c C1 (M x RN',R I) satisfies the

following assumptions

r
(1) F(X,u + ) miTiei ) = F(x,u) V(x,u) C M x IN, V(mi,...,mr) C

where ei = (0,...,1,...,01, i 1,2,...,r, and (TI,...,Tr) C Rr is given,
ith

(2) IF (XU)L(N <

(MR

i:;.k k
(3) F(x, I tjg(x))+ as Itl ( j

j-1 J-1

and that h c C(M,e), h = (hl,...,h N ) satisfies

0 -4-



" hi(x)dx = 0, 1 = 1,2,...,r
%%- M

and hj(x) = 0, j r + 1,...,N. Then the elliptic system

-Au + (x) u - Fu (x,u) + h(x) =0 on M

has at least r + 1 solutions, where

0
' ( X = (( a i j ( x ) ) ) N x N

Proof. Let H = W 1 '2 (M,RN), A = IN + (-A)- 1a(x), and

f(u) = f -F(x,u(x)) + <h(x) * ulx)>N

M

Obviously,

4 ker A = span{el,...,er, 91''''k 1

and D C C (H,R1 ), having a bounded and compact differential, satisfies the

conditions (P) and (LL).

The conclusion follows immediately from Theorem 1.

Remark 2.1. In Theorem 2, we may replace the compact manifold M by a

smooth bounded domain Q in R, in addition to the Neumann boundary value

condition

=u0,

*where v is the outward pointing normal of the boundary an.

Example 2.1. M = S1, r = N = 1. This is just the periodic solution

problem for ODE

U + Fu(t,u) = h(t) (2.2)

where F E C1(S I x R1 ,R1 ) is periodic in u, and h c C(S1,R1 ) satisfies

the zero mean condition f h(t)dt = 0. Under these conditions, (2.2) has at

SI
least two solutions. It was shown by Mawhin and Willem [8], Li (6] and Franks

(4].

-5-



Example 2.2. The case M Si, and r = N. The corresponding ODE

system was studied by Jiang [5] and Rabinowitz [11. In this case, the

following system possesses at least N + 1 solutions

N> U + Fu(t,u) =4i(t) (2.3)

where F c C1 (S1 x 0,0 1 ) is periodic in u = (Ul,...,UN), and

h c C(S1,RN), satisfies f h(t)dt = 6.
IS 1

Example 2.3. The case M = S , r < N, with (aij(t))(N-r)x(N-r)

positive definite. The ODE system was studied by Mawhin [7]. The system

N; - (t)u + Fu(t,u) = 0

possesses at least r + 1 solutions, provided that F c C I(sI x RN,R 1) is

* periodic in the first r variables (uI, .. ,ur), and F u(t,u)fl L<<

Example 2.4. The case M = Tn , r = N = 1. The problem was studied by

Pucci and Serrin [9,10]. The following equation

Au + Fu(x,u) = 0 on Tn

possesses at least two solutions, provided that F C Cl(T n x RI ,R1), and is
V.

periodic in u.

The Neumann problem for the elliptic equation (in case r = N = 1) was

studied by Rabinowitz [11].

Remark 2.2. All the above examples deal only with functionals bounded

from below, however, Theorem 2 implies more than that. The improvements are

V" in two directions:

(1) The functional is semi-definite, i.e., it is bounded from below

except on a finite dimensional subspace.

(2) The resonance case is studied, it only happens when r < n.

-,
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§3. Indefinite functionals

In this section, we shall extend the results of §2 to indefinite

functionals. The saddle point reduction argument will be applied.

Let H be a Hilbert space, and let A be a self-adjoint operator with

domain D(A) C H (unbounded). Assume that F is a potential operator with

0 C Ci(H,RI), F dO and %(D) 0. The following assumptions are made

(A) I a < 0 < 8 such that a,8 a a(A) and o(A) fl [a,B] consists of at

most finitely many eigenvalues of finite multiplicities.

(F) F is bounded and Gateaux differentiable, with

,' .- {dF(u) - in 4 Y, !Zb u C H.
2 2 ' uH

(D) For small e > 0, with -c I a(A), let V = D(I(CI + A){I/ 2 ), assume

that D E C (VR).
.U

Theorem 4. Suppose that

(P) a el,...,er E ker A, they are linearly independent, and a (Ti,...,Tr) C

.. r, such that

r
O(x + I m Tjej) = D(x), V(ml,...,mr) C Zr, Yx e H.

j= 1

(LL) O(x) + ±- if lxi + c Yx c ker A r spanfel,...,er}

Then the equation

Ax + O'(x = 0

has at least r + 1 distinct solutions.

Proof. A saddle point reduction procedure is applied. Let

PO=f dEwl P+u =f dEX, Pand f dEX
a 8-

where [EX} is the spectral resolution of A, and let

-~ -7-



0 =PoH, H* =PH

and for small C > 0, -e a(A), let

V0 = 1(cI + A)1-11 2H0 , V, = I(EI + A) -112H+

For each u c H, we have the decomposition

'! U+ + UO + u_

with u0 c H O , u± c H±. Let x = x+ + x__ E V, where

Xo = 1(ki + A)1-1/ 2Uo, x± = f(CI + A)- 1/2u ±

We define a function on the finite dimensional space V0  as follows

1
a(z) =- (Ax(z),x(z)) + O(x(z))

2

where x(z) = x+(z) + x_(z) + z, z = xE E Vo, and xt(z) are the solutions

of the equations

x± = -(EI + A)-IP+(eI + F)(x+ + x + z)

We shall prove that

r
10 x±(z + I Tjej) xt(z), VZ c V0.

S.- j=1

" In fact,

r

P±(eI + F)(x+ + x_ + z + I Tjej) = P±(eI + F)(x+ + x- + z)
-j=1

therefore

4. r

- Xt(Z) = X±(z + j Tjej)
j=1

r
. 20 a(z + I Tjej) = a(z).

j=1

Claim:



II

a(z + Tej) - (Ax(z +/ Tjej), x(z + Tje.)) + O(x(z + Tjej
j =1 j=1 j=1 9=I

1r r
I (Ax(z),x(z) + I Tjej) + C(x(z) + j Tjej)
2 j=1 j

=- (Ax(z),x(z)) + O(x(z))

= a(z)

30 a satisfies the (PS) condition on Tr x (Y 0 N(A) I) f V0 where Y = N(A)

n span~el ,.... er
} I -

Claim: Suppose that {zk } is a sequence along which

{a(zk)} is bounded, and fa'(zk )I = 0(1)

Accord-ng to Chang [l, p. 105),

IAx(z k ) + F(x(z k)) H  o(1)

Let Q be the orthogonal projection onto Y, which is considered as a

subspace of the Hilbert space H = Y 0 N(A) . Thus on the space H,

(I - Q)x(z k ) = -A-'(I - Q)F(x(zk)) + o(I)

k
since F is bounded, I(I - Q)x(z )I is bounded. Noticing

1
O(Qx(zk)) = O(x(zK)) - f (F(xt(zk)),(I - Q)x(zk))dt

0

' 1
aiz. 1((z)xk -kk

= a(z - f (Ax(zkl,x(zkl) - f (F(xt(zk)),(I - Q)x(zk))dt
2 0

where

xt(z) (( - t)I + tQ)x(z)

and

(Ax(z= (x(zk),( = F(x(zk)) + o(1),(I - Q)Xlzk))

O(Qx(z k)) must be bounded. According to the condition (LL), Qxzk) is

-9- ,



bounded. The compactness of zk now follows from the boundedness of x(zk)

and the finiteness of the dimension of V0 .

40 If we decompose V0 into span{el,...,er } 0 (Y e N(A) ) n V0,

z v + w, (v,w) E span{el,...,er} 0 (Y E N(A) ) n V0

and let

g(w,v) = (AE(w + v),&(w + v)) + $(x(w + v))

where
(z) = x+(z) + x_(z)

then g is well defined on Tr x (y 0 N(A) I ) n V0, and

dg(w,v) = P0 F(x(w + v))

which is bounded and then is compact on finite dimensional manifold. The

function a(z) now is written in the following form:

a(w,v) = (Aw,w) + g(w,v)
2

Noticing that F is bounded, 1 (z)I is always bounded. If we denote y

the projection of w onto Y we have

g(y,v) = (AE(y + V),E(y + V)) + 0(y) + [0(&(y + v) + y + V) - 1(y)]

The first term and the third term are bounded, therefore

g(yv) as l y+,

The function a(w,v) satisfies all assumptions of Theorem 0. Theorem 4 is

proved.

Now we study the periodic solutions of the Hamiltonian systems, in which

the Hamiltonian functions are periodic in some of the variables.

We use the following notations: p,q e RN,

P = (PlO ... PN)' q ,(q 1 , ... #qN) 1 r 4 s 4t 4 N

(P1 .... Pr) ,  q = (ql,...,qr) #

P (Pr+1 ..... PS
) ,  

q = (qr+l .... qs) I

et -10-



P (PT+1'...'P11>01 = (q~" ~N

We assume

P. (I)A~t), B~t), C~t) and D~t) are symmetric continuous matrix function

on S1, of order (S -r) x (S - r), (T - s) x CT - s), (N - T) x (N - T)

and (N - T) x (N - T) respectively. Let A=f A~t), and B =f B(t) be

S 
1

invertible.

(II) HEC 2(S1 x R2N ,Rl) is periodic in the following variables P~rp~

and H"is bounded.

d
(III) Let span{qj1I...,qm} = ker(- J-- CC(t) 0 D(t))) where

(iI, INT and q~'*'mare linearly independent. And

1= 0 t! (

f Cj(t) =f 1dj(t) = 0

S S

-~ i = 1,...,rs + 1,...,T, j=1,.,

We define a Hamiltonian function as follows

H(t,p,q) 21 A *) + -1B(t)q * q + -1 (C(t)p' - p + D(t)q q

T
+ (cijt)pi + d1Ct)qi) + H(t,p,q)

Theorem 5. Under conditions (I)-(IV), the Hamiltonian system

(HS) dJ.- z Hz(t,z), tCS'
dt

has at least r + T + I periodic solutions, where z -(p,q) c R1

-11-
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.1*~ Proof. Let

0

A(t)

0

C(t)

a A~t) =0

0

B(t)

9 D(t))

and let (the subscripts on J coincide with those on p)

d
A =(-J - - A(t))

dt

d ke(A(t) 0 At )
0) d

It ft d, with) q(2r) )q()

(e.wih *=).AcrigtthasupinIc=9.We have

K erI- J -c k e ( A ) ~ 3 - 1 R

dt dt

<= -12-
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Let

(z)= f {H(t,z(t)) + T [ci(t)Pi(t) + di(t)qi(t)]}dt
S1 i=1

Then all the assumptions (A), (F), (D), (P) and (LL) are satisfied. The proof

is complete.

Example 3.1. If the Hamiltonian function H E C2 (SI x R2NI) is

periodic in each variable, then (HS) has at least 2N + I periodic solutions.

This is the case r = s = T = N.

This result related to the Arnold conjecture, was first obtained by

Conley and Zehnder [3], see also Chang [2].

Example 3.2. If H e C2 (S1 x R2N,RI), where H is periodic in the

components of q, and that there is an R > 0 such that for Jpl > R,

-. H(t,p,q) = - Mp - p + a * p
2

where a c RN, and M is a symmetric nonsingular time independent matrix,

then the corresponding (HS) possesses at least N + 1 distinct periodic

solutions.

This is the case r = 0, S - T = N.

This is a result obtained by Conley and Zehnder [3], see also P. H.

Rabinowitz (11].

Example 3.3. Let H c C2(Sx x R4 ,Rl) be periodic in (pl,ql). Assume

that aR> 0 such that

H(t,p 11p 2 ,q1 ,q2 ) = (cp + dq ± +

2. 2p 2 2 2

for 2 + q2 R, where cd = •0 for some k c Z, and A > 0. Then
2 -2

the corresponding (HS) possesses at least 3 periodic solutions.

-13-



, j

In fact,

ker(-J - (c 0)) = span{(- sinktcoskt),( coskt,sinkt)}

it follows

maxf{j '11(X 2 + X2) >d (-Xlsinkt + A2coskt)
2 + (Alcoskt + A2sinkt)

2

1l(X 1 22)
> rain{d ,,1(X 2 + X2 )

Therefore

H(t,0, (-xsinkt + X2coskt),O,(Xlcoskt + X2sinkt))

mn rnn ,I + X 2 + +_, or + -,

% as + X 2 +a

Remark. In the assumption (I), if the operators A and B are

singular, then

AE ker ( - <==> c ker A, q = f A(s)ds +

Thus,

A~t) t
ker-d ) = (€,?)d s - r) {(c,f A(s)ds c)gZc ker A.

Similarly,

{(•,U B(t)) * ',{ B(s~dsd~dcl C ker B.

In order to apply Theorem 5, the assumption III is replaced by

A t t m
H(t,c + f A(s)dsZ + f B(s)dsd + d + I Tiqj(t)) +±t

W' o 0 J=1
as P + Idl + ITI + -, where - c ker A, d C ker B, and T c RP. The same

theorem holds.

Example 3.4. Let H c C2(S I x R4 ,Rl) be periodic in (pj,qj,q2 ).

Assume that a R > 0 such that

-14-



') Cotp2

41~ 1 p2 q 1 2  = 1 2 2

for 1P21 R, where A > 0 is a constant, then the corresponding (Hs)

2 possesses at least 4 periodic solutions.

In fact,

H(t,p11 p2 q1 1 q 2) A/1c + ±2 + as Ic! -
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